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Block 13 continued: 

However, since data show that signals are not perfectly correlated, and that the signals become 
less correlated as the separation between sensors increases, a more complex analysis is needed in 
order to properly specify the type of array needed to achieve a desired azimuthal accuracy. For 
example, for a 5-second period signal, perfect correlation theory would lead to an estimated azi- 
muth standard error 3.5 times smaller for an 8 km aperture array than would be predicted by the 
more accurate theory. 

Using the more accurate theory, we find that for the 5-second period signal which is expected 
from a 1 kt atmospheric nuclear explosion, a 1 km aperture array at the detection threshold can 
have an azimuth estimation error, averaged over the signal duration, approximately equal to the 
best historically observed residual error. This observed error is shown to probably be true propa- 
gation error and not estimation error. At twice the detection amplitude threshold, or at 2-3 sec- 
onds period, the estimation error is substantially smaller than the propagation error. 

Thus it may not be necessary to build arrays larger than 1 km in order that practical estimation 
errors be less than propagation errors for signals of interest. However, an array with a 2 km aper- 
ture, and including a central tripartite whose elements are separated by 200 km, would provide an 
array not so close to the margin and would give better performance at the higher frequencies 
which may be useful for regional monitoring and for source discrimination. In addition, the array 
may have significantly less aliasing at periods of interest and may therefore be able to better 
detect in the presence of interfering signals such as microbaroms. 

In this report we use coherence values calculated from data from a large atmospheric nuclear test 
to parameterize the variance of the velocity and azimuth of infrasonic waves, and use these 
parameters to estimate the loss of signal coherence between two sensors as a function of signal 
period, distance between the sensors, and angle between the wavefront and the vector between the 
two sensors. We conclude that the loss of signal at 1 Hz for the 1 km array is 1.4 dB, probably 
acceptable, but for the 2 km array it is 3.8 dB, probably unacceptable if the array is to be used to 
monitor atmospheric events at regional distances. The addition of the 0.2 km aperture 3-element 
central array to the 2 km array overcomes this difficulty. 

These conclusions are preliminary because the underlying data is available only for much larger 
periods and inter-sensor distances. Analysis of additional signal data at more appropriate periods 
and spacings is critically important. 
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ABSTRACT 

The Infrasound Experts Group of the Geneva Conference on Disarmament Ad Hoc Committee on 
a Nuclear Test Ban has recommended an infrasound array design consisting of four elements, 
with three elements forming an equilateral triangle and the fourth at the center of the triangle. 
The Experts recommended that the sides of the triangle be in the range 1 to 3 km. 

In this report, in an attempt to place constraints on the array aperture, we evaluate the beamform- 
ing azimuthal estimation error of such arrays and compare it to historical data on observed azi- 
muth residuals. The analysis for perfectly correlated signals shows that for beam signal-to-noise 
» 1 the rms error is proportional to wavelength and inversely proportional to array aperture, 
beam amplitude signal-to-noise, and the square root of the time-bandwidth product. For beam 
signal-to-noise « 1 the relations are the same except that the rms error is inversely proportional 
to the square of the amplitude signal-to-noise. 

However, since data show that signals are not perfectly correlated, and that the signals become 
less correlated as the separation between sensors increases, a more complex analysis is needed in 
order to properly specify the type of array needed to achieve a desired azimuthal accuracy. For 
example, for a 5-second period signal, perfect correlation theory would lead to an estimated azi- 
muth standard error 3.5 times smaller for an 8 km aperture array than would be predicted by the 
more accurate theory. 

Using the more accurate theory, we find that for the 5-second period signal which is expected 
from a 1 kt atmospheric nuclear explosion, a 1 km aperture array at the detection threshold can 
have an azimuth estimation error, averaged over the signal duration, approximately equal to the 
best historically observed residual error. This observed error is shown to probably be true propa- 
gation error and not estimation error. At twice the detection amplitude threshold, or at 2-3 sec- 
onds period, the estimation error is substantially smaller than the propagation error. 

Thus it may not be necessary to build arrays larger than 1 km in order that practical estimation 
errors be less than propagation errors for signals of interest. However, an array with a 2 km aper- 
ture, and including a central tripartite whose elements are separated by 200 km, would provide an 
array not so close to the margin and would give better performance at the higher frequencies 
which may be useful for regional monitoring and for source discrimination. In addition, the array 
may have significantly less aliasing at periods of interest and may therefore be able to better 
detect in the presence of interfering signals such as microbaroms. 

In this report we use coherence values calculated from data from a large atmospheric nuclear test 
to parameterize the variance of the velocity and azimuth of infrasonic waves, and use these 
parameters to estimate the loss of signal coherence between two sensors as a function of signal 
period, distance between the sensors, and angle between the wavefront and the vector between the 
two sensors. We conclude that the loss of signal at 1 Hz for the 1 km array is 1.4 dB, probably 
acceptable, but for the 2 km array it is 3.8 dB, probably unacceptable if the array is to be used to 
monitor atmospheric events at regional distances. The addition of the 0.2 km aperture 3-element 
central array to the 2 km array overcomes this difficulty. 



These conclusions are preliminary because the underlying data is available only for much larger 
periods and inter-sensor distances. Analysis of additional signal data at more appropriate periods 
and spacings is critically important. 



INTRODUCTION 

Design of an infrasound array presents a classic problem in array design: the trade-off between 
signal-to-noise and location accuracy. Although infrasonic noise becomes uncorrelated at all 
periods at distances of less than 100 meters (McDonald et al., 1971; Blandford and Clauter, 1996), 
the signals themselves become substantially uncorrelated only at distances ranging from 1 to 50 
kilometers (km) for periods ranging from 1 to 50 seconds (Mack and Flinn, 1971). 

Thus, for a fixed number of sensors, as array aperture increases beyond a few hundred meters, the 
signal-to-noise ratio decreases. However, it seems intuitively clear that if the signal does not 
become too uncorrelated, the increased aperture will enable a more accurate estimate of the sig- 
nal's arrival azimuth and slowness. 

It is commonly thought that the location capability of an array is a fixed number given by, for 
example, the width of the 3-decibel (dB) point in the array response. However, a moment's reflec- 
tion will show that this cannot be strictly correct. If the signal-to-noise is sufficiently poor then no 
location capability exists. And, perhaps more difficult to see, if the signal-to-noise is arbitrarily 
high then the location precision also can be arbitrarily good. One need only climb to the very 
peak of the wavenumber response of the signal. For perfect signal correlation Harris (1990) has 
shown, for example, that for a fixed-sized array the root-mean-square (rms) slowness error is 
inversely proportional to the amplitude signal-to-noise ratio and also inversely proportional to the 
square root of the time-bandwidth product of the signal. 

Now, when several repetitions of an azimuthal estimate are made with a fixed signal-to-noise, one 
expects some standard error of the estimates, and one expects that this error will depend on the 
signal-to-noise. Wu (1982) derived a formula for this standard error using a statistical analysis 
assuming perfect correlation of fixed but unknown signals. Harris (1990) also gave azimuth error 
estimates for beamforming of fixed, unknown signals. 

The formulas used in this report are quite similar for perfectly correlated signals and are derived 
in the Appendix which is authored by R. Shumway. However, in this report we assume not that 
the signals are fixed and unknown, but that they are stochastic with known spectrum. Also in the 
Appendix is the analysis for stochastic signals which are not perfectly correlated. 

Of particular interest is the performance of arrays designed as recommended by the Infrasound 
Experts Group of the Geneva Conference on Disarmament (CD) Ad Hoc Committee on a Nuclear 
Test Ban as found in Working Paper 224 (1995). This design comprises a 4-element array with 
three of the elements arranged in an equilateral triangle and the fourth element in the center. The 
spacing between the outer three elements is yet to be determined, but was suggested by the 
Experts to be between 1 and 3 km depending on the detection range and on the details of the sig- 
nal processing algorithms. 

McKisic (1996), drawing on reports by Olmstead (1952), presents data showing that the dominant 
period of signals observed from 1.2 kiloton (kt) atmospheric nuclear explosions at distances 
between 1000 and 3600 km ranged from the 3- to 10-second period, with modes at 4-6 seconds. 
Since these distances are typical of the closest distances that can be expected between an event 



and the stations in the 60-station infrasound network suggested in Working Paper 224 (1995), it 
would appear that the array design should be optimized for these periods. 

Note, however, that it may be useful for arrays to have good signal-to-noise at other periods, both 
shorter and longer, if these may be used for discrimination between air nuclear blasts and other 
sources such as bolides or mining blasts. The shorter periods, as might be expected, and as we 
shall see, also offer the possibility of better precision in azimuth estimation. 

A classical approach to detection involves beamforming the traces of an array, performing a short- 
term over long-term amplitude ratio, and selecting the beam with the maximum ratio as the beam 
directed toward the source. The peak of the beam power is used to determine the azimuth to the 
event. The Appendix shows that this procedure is actually the optimum azimuth estimator for the 
case of perfectly correlated signals, and that a form of weighted beamforming is optimum in the 
case of imperfectly correlated signals. 

It is worth noting that, in the presence of non-stationary noise, it would be useful to estimate the 
noise in the signal window. This would lead to estimating the azimuth by the peak of the F statis- 
tic, given by the ratio of the signal power to the noise power, in place of the peak of the signal 
power alone. Also, in the case where noise levels vary strongly between channels of the array, a 
generalized F statistic may be computed in which each channel's contribution to the signal esti- 
mate is weighted by the estimated noise on the channel (Shumway (1996), personal communica- 
tion). In practice, this is the case for infrasound and so future development of advanced detectors 
and estimators along these lines is desirable. 

There are other detection and location processors possible, for example, the correlator detector 
referenced by Cook and Bedard (1971). This detector computes the maximum cross-correlation 
between all pairs of channels and detects on the average of these maxima. Then the azimuth may 
be determined by fitting a plane wave to the delays determined by the cross-correlation maxima. 
However, in contrast to the analysis in this report, there is no available statistical time series anal- 
ysis of the correlation detector and locator, and so we cannot yet quantitatively estimate the vari- 
ance of its performance as a function of array aperture and signal correlation. However, classical 
statistical estimation theory would lead us to expect that beamforming would be the optimum pro- 
cessor so that correlation processors could perform no better. 



THEORY 

Beam Loss 

When an array of iV sensors is beamformed, and the noise is correlated, then the noise on the beam 
is reduced according to the form: 

dB = loglO[JV/(l+(JV-l)p)] (1) 

where p is the average noise cross-correlation between pairs of the N traces considered (Blandford 
and Clark, 1975). A similar formula holds for loss of signal due to lack of correlation between 
signals if the correlation is less than unity. 

Representation for Empirical Infrasonic Signal Coherence 

Mack and Flinn (1971) analyzed infrasound records from the December 27,1968, Chinese atmo- 
spheric nuclear test as recorded at the 13 microbarographs of the Large Aperture Microbarograph 
Array (LAMA). This array had an aperture of approximately 60 km and the microbarographs 
were coincident with the center elements of subarrays of the corresponding seismic array, LAS A. 
The closest elements of the infrasound array were 7 km apart, and the periods analyzed ranged 
from 10.7 to 85.7 seconds. Mack and Flinn (1971) computed the coherence between pairs of 
microbarographs and showed that the loss of coherence was greater for sensors oriented parallel 
to the wavefront than for those oriented perpendicular to the wavefront. 

Mack and Flinn (1971) used a signal model in which the signal was described by a uniform distri- 
bution of waves within an azimuth/velocity window in frequency wavenumber space. They fitted 
the coherence data with an equation of the form: 

2 
y  = 

sin(27i&0JcsinA6) 
27t£osinA0 

sin(2rcAfcy) 
27tA£y 

(2) 

In this expression the wavenumber k = l/X where the wavelength X=c/T where c is the phase 
velocity (approximately 0.3 km/sec for infrasound) and T is the period in seconds. Mack and 

o 

Flinn (1971) determined that a suitable value for A0 was 5   and for Ak, values were calculated 
for different values of T corresponding to Ac=0.015 km/sec. This latter value is greater than that 
for the theoretical curves plotted in most of the figures in Mack and Flinn (1971), however, we 
may see that their data most relevant to this study, that plotted in their Figures 6 and 14 for T=10.7 
seconds, falls below their curve for Ac=0.010 km/sec. Therefore in this paper we use Ac=0.015 
km/sec. 

In the results section to follow we must keep in mind that the above azimuth and wavenumber 
variances were determined for 10- to 85-second periods and 7- to 60-km element spacings. They 
are, however, at the most extreme, applied to 0.5-second periods and to 0.2-km spacings. Only if 
the model of propagating waves is also correct at these periods is it likely that the extrapolation of 
the data taken at the different periods and spacings will be valid. It is critical that further evalua- 
tion of good signal-to-noise data at the shorter periods and spacings be carried out. 



For comparison with future observations Figure 1 and Table 1 give the predicted values from the 

Infrasound Coherence, Parallel and Perpendicular  

3 4 5 6 7 
Distance Between Sensors, km 

10 

Figure 1. Coherence as a function of intersensor distance for T=10, 5, 2,1 seconds 
according to equation (2) using Ac=0.015 km/sec and A0=5 degrees as determined 
from Mack and Flinn (1971), parallel and perpendicular to the wavefront. 

preceding equation for infrasound coherence as a function of period, d, distance between sensors, 
and direction of approach with respect to the wavefront. 

The periodic behavior of the coherence at low values of coherence for the larger distances as seen 
in Figure 1 is not reflected in the original data and is simply an artifact of the form of the functions 
in (2) used to fit the observed data. 

The low values of coherence seen at 8-km spacing for 2-1 Hertz (Hz) seem to conflict qualita- 
tively with a signal seen at AFTAC arrays, so there is reason to suspect that the coherence values 
used in this report are too small and thus that conclusions for short periods and large apertures are 
overly pessimistic. On the other hand, calculations using (2) for spacings of 0.1 km, a typical 
value for Department of Energy (DOE) arrays, gives coherence values between 0.99 and 0.83 for 
1-4 Hz, in agreement with qualitative observations for those arrays. 



The preceding analytical expression for coherence is, for frequency-filtered, aligned, identical sig- 
nals in the time-domain which have been randomly perturbed, equal to the correlation and so we 
shall treat it in this report as equal to p in the signal loss equation, (1). 

Period (sec) 

1 2 5 d(km) 

0.71 0.92 0.99 1 sensors 

0.21 0.71 0.95 2 perpendicular 

0 0.44 0.88 3 to 

0 0.21 0.80 4 wavefront 

0 0.04 0.39 8 

0.28 0.75 0.96 1 

0.02 0.28 0.83 2 sensors 

0 0.02 0.66 3 parallel 

0 0.02 0.46 4 to 

0 0 0.01 8 wavefront 

Table 1: Predicted Coherence from Equation (2) 

Implications of Coherence Variation with Frequency and Distance 

The behavior of coherence as plotted in Figure 1 has immediate implications for array design. We 
note that, for both parallel and perpendicular waves, for 5-second waves the coherence is greater 
than 0.95,0.8, and 0.65 at 1,2, and 3 km, respectively. These values are likely great enough to 
ensure that almost any processing technique which relies on coherence will work satisfactorily for 
the CD arrays whose intersensor spacings are equal to the array side and 0.577 times the array 
side. 

On the other hand, for 1 Hz we see that the coherence is between 0.7 and 0.25 at 1 km, but is only 
between 0.2-0.02 and 0.0 and 0.02 at 2 and 3 km, respectively. 

The 1-km array appears to have adequate coherence at 1 Hz; but for the 2- and 3-km side arrays, 
coherence processing between the outer elements will be useless. For the 3-km array the closest 
spacing is 1.73 km for which the coherence varies between 0.35 and 0.0. These values cast doubt 
on the robustness of any processor, such as all suggested detection processors, for the 3-km arrays 
which relies on the coherence of 1 Hz signals. 

At 2 km the minimum spacing is 1.15 km which has coherence at 1 Hz between 0.6 and 0.15. It is 
not clear how robust an array processor can be with such coherence values for three intersensor 
spacings, and values between 0.2 and 0.02 for the other three. 



Thus, general considerations of coherence suggest that if it is desired to detect 1 Hz signals, CD 
arrays with apertures larger than 1 km are not likely to be satisfactory. 

Azimuth Standard Error for Perfectly Correlated Signals 

In the Appendix, equation (39) gives an expression for the mean square azimuthal error for an 
array with perfect signal coherence, given the covariance matrix of the array coordinates. For all 
of the arrays considered in this report, the correlation between the array element locations, which 
would otherwise figure in the expanded equation, is zero and ax = a   = a. In this case, the 
equation may be greatly simplified so that the physical parameters controlling the error are more 
clearly revealed, and the result is seen as equation (3). 

'a n ) m^fi^whrh 
In this equation, N is the number of sensors in the array, a is the square root of the diagonal cova- 
riance matrix element of the array coordinate, and snr is the theoretical power signal-to-noise 
ratio on a single element of the array; aa is expressed in degrees rather than radians. 

We see that the azimuthal error is independent of the direction of approach and is directly propor- 
tional to the signal wavelength, inversely proportional to the array aperture, and, for high signal- 

1/2 to-noise, inversely proportional to (N -snr)     .In the case of uncorrelated noise and for a per- 
fectly correlated signal, this is equal to the beam amplitude signal-to-noise ratio. 

1/2 It is worth noting that the term( 1 + 1 /(N ■ snr)) seen in (3) is not present in the theory of Wu 
(1982) which otherwise results in a formula identical to (3). The difference is apparently due to 
the differing statistical assumptions in the two studies. Wu (1982) assumes that the signal is fixed 
but unknown, the present study assumes, in order to appropriately treat the incoherent case, that 
the signals are stochastic. In the limit of perfect correlation one might expect that the stochastic 
signal would give the same result as fixed-identical but unknown signals, but apparently there is 
this one-term difference. 

The effect of this additional term is, for low signal-to-noise, to make the error increase in inverse 
proportion to the beam power signal-to-noise instead of inversely to the beam amplitude signal- 
to-noise. In addition, at the threshold of detection where the beam signal-to-noise is near unity, 
the azimuthal variance for the stochastic case is approximately doubled by the additional term. 

Note also that the azimuth error is inversely proportional to the square-root of the time-bandwidth 
product, BT, of the time window analyzed. It is this term which is responsible for reducing the 
azimuth variance when several azimuth estimates from a long train of arrival pulses are averaged 
together. 



Azimuth Standard Error for Less-Than-Perfect Correlation 

Although the theory for perfect correlation offers some physical insight, we shall see that it is 
inadequate for designing infrasonic arrays where, for apertures and signal periods of interest, the 
lack of signal correlation strongly affects the azimuth estimation precision. In the Appendix, the 
relevant equation is equation (46) which may be transformed to the form: 

• = bf J • &J • [iSf) • iN^Tr) (**X2*r<ff • D, • 6) (4) 

where 9 is related to the estimated signal wavenumber components kx and ky by 0 = (k ,—kx)'. 

(Note the reverse placement of the vector components; the prime mark indicates the transpose 

operation.) Dp is given by Dp = P~   D where Ps is the power spectrum, assumed in this appli- 
cation, although not in the Appendix, to be the same at each sensor, and D is the 4x4 matrix which 
is the generalization of the array element location covariance matrix, and is given by equation (42) 
in the Appendix as 

z) = E^•4/••(^-^)•(^-^), (5) 

where f are element coordinates, and FL = P~ • /L where /L is the signal covariance matrix. 

In this application the off-diagonal elements of FL are given by the coherence, given by (2). 

The signal-to-noise enters the calculation of D through the relation for the matrix for cJlc 

c = FS-(FS + — -I)~ s  v       snr    ) 

It does not appear possible to write (5) in pure matrix notation. 



RESULTS 

CD Array Geometry 

For an array in the form of an equilateral triangle, 1 km on a side with a fourth instrument at the 
center, the array of (x, y) coordinates is: 

x(km) y(km) 

0.0 0.0 

0.0 0.577 

0.5 -0.289 

-0.5 -0.289 

Table 2: CD Infrasound 1 Km Array, Nominal Coordinates 

For an array of this shape with a side of 3 km instead of 1 km all of these dimensions would, of 
course, be multiplied by 3. 

For the array in Table 2, the covariance matrix, with N as the denominator instead of the usual JV- 
1, is: 

0.125 

0.0 

0.0 

0.125 

Table 3: CD Infrasound 1 Km Array Covariance Matrix 

For an array with sides 3 km long, the elements in this matrix would be 9 times as large. The 
1/2 parameter a, which is (0.125)      = 0.35 would be 3 times as large for a 3-km array. 

Signal Parameters 

2 
The value of snr chosen for most tabulations in this report is (0.75)   since for a 4-element array, 
assuming perfect signal correlation and uncorrelated noise, this will lead to an amplitude signal- 
to-noise on the beam of 1.5. This value of signal-to-noise is the traditional value accepted as suf- 
ficient for a seismic analyst to confidently declare a detection; and examination of infrasound sig- 
nals in noise reveals many qualitative features in common with seismic signals, e.g., a relatively 
broadband and pulse-like character, so that use of this value for snr seems reasonable. 

Plots of signals from a few kilotons of conventional explosives detected at distances of a few thou- 
sand kilometers have been published by Whitaker et al. (1990). These waveforms are character- 
ized by about six pulses of energy; with the duration of each pulse about 60 seconds. Thus we 
shall choose T = 60 seconds for our calculations. The bandwidths tabulated are centered on T= 
[20, 10, 5, 2, 1, 0.5] seconds and the bandwidths are simply taken from the center-points of the 

10 



adjacent bands (thus the bands overlap), with the additional parameters of 40 seconds and 3 Hz 
for the lower and upper limits for the lower and upper bands. The BT product is between 1.0 and 
2.0 for all bands. All calculations presented are for an azimuth of approach of 30 degrees East of 
North. Test calculations for other directions differed insignificantly. 

Because of the likely operational procedure of averaging over perhaps four of the 60-second win- 
dows, it should be kept in mind that most tabulated standard errors, which are for a single 60-sec- 
ond window, could be reduced by a factor of two. 

In evaluating an infrasonic array we must consider both the detection and location capability. 
Therefore, we shall tabulate two parameters, signal loss and azimuth error, as a function of array 
aperture and signal period. 

Beam Signal Loss 

Table 4 gives the beam signal loss in accordance with equation (1). We see that for larger arrays 
and for shorter periods there is substantial signal loss. If detection and estimation were based on 
simple beamforming, one would expect large losses in capability. However, we have seen that in 
the case of loss of coherence the optimum processor is a weighted beam. 

Period (sec)/Bandwidth (Hz) 

d(km) 20/0.075 10/0.15 5/0.4 2/0.8 1/1.5 0.5/2 

1 0.00 0.01 0.06 0.38 1.4 3.8 

2 0.02 0.06 0.24 1.4 3.8 5.7 

3 0.03 0.14 0.54 2.7 5.2 6.0 

4 0.06 0.24 0.93 3.7 5.7 6.0 

8 0.24 1.0 2.9 5.7 6.0 6.0 

Table 4: Beam Signal Loss (dB), 4-Element CD Array, d km on a Side According to 
Equation (1). 

In agreement with the discussion given previously of Figure 1, we see that there is a signal loss of 
3.8 and 5.2 dB for detection at 1-second for 2 and 3 km aperture arrays. This suggests that most 
detectors will perform poorly for such apertures. In particular, one would suspect that detectors 
which depend on correlation between signals, such as infrasound detectors, would perform 
poorly. 

It should be noted that in the case of infrasound detection the detection and estimation statistic 
would be not the beam power divided by the long-term noise, but is instead the beam power 
divided by the residual noise estimated during the signal window. This latter statistic has an F dis- 
tribution and is, therefore, commonly referred to as an "F detector." F-type detectors are used in 
infrasound detection because of the presence in infrasound data of uncorrelated noise bursts due 
to cells of low pressure advected by the local wind. 
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Comparison of Azimuth Precision for Perfectly Correlated and for Uncorrelated Signals 

Table 5 gives the azimuth estimate error both for perfect coherence and for coherence in accor- 
dance with equation (2). We see that the effect on azimuth error of the loss of signal coherence is 
substantial. While values as low as 0.02 degrees are seen for perfect coherence, and it is clear that 
in theory increasing the aperture of the array and the frequency of the signal will lead to arbitrarily 
good precision, in practice the best accuracy obtained for the imperfect correlation case is 30 
times larger: 0.65 degrees; and it occurs for the shortest period for the smallest array. 

Period (sec)/Bandwidth (Hz) 

d(km) 20/0.075 10/0.15 5/0.4 2/0.8 1/1.5 0.5/2 

1 41.3/41.4 14.6/14.7 4.5/4.5 1.26/1.39 0.46/0.66 0.20/0.65 

2 20.6/20.7 7.3/7.4 2.2/2.4 0.63/0.90 0.23/0.75 0.10/2.87 

3 13.7/13.9 4.9/5.0 1.39/1.71 0.42/0.86 0.15/1.49 0.07/33.6 

4 10.3/10.5 3.6/3.9 1.12/1.42 0.32/1.02 0.12/3.31 0.05/3.95 

8 5.2/5.5 1.8/2.3 0.56/1.25 0.15/4.54 0.06/4.56 0.02/117 

Table 5: Azimuth Error (deg), 4-Element CD Array, d km on a Side Single-Element 
Amplitude Signal-to-Noise of 0.75. Perfect signal correlation according to equation (3) 
and imperfect correlation according to (4). Variability at the bottom of last column 
reflects low-coherence details of equation (2). As mentioned in the text, values seen 
here should be reduced by a factor of at least 2 to account for the signal character in 
which several 60-second pulses are spread out over time. 

Qualitative Discussion of Azimuth Precision for Uncorrelated Signals 

Note that this most precise azimuth estimate for realistic coherence occurs at values of period and 
aperture where the signal loss is 3.8 dB out of a possible 6 dB (Table 4) and where, therefore, the 
coherence is much smaller than unity. Thus, there is a complex calculation required to determine 
the generalized beam to be maximized to determine this azimuth, as seen from the discussion of 
equation (40) in the Appendix. Determining this generalized beam requires a good estimate of 
the array coherence. Thus, improved estimates at higher frequencies and larger apertures may 
come at the expense of extra analysis and processing, reducing the advantage from a system point 
of view of the larger aperture arrays. 

From a qualitative point of view we see, for example, for the 2 km aperture array, that there is a 
minimum standard error, 0.75 degrees, as a function of period at 1-second period. The increase in 
error toward longer periods reflects a lessening of the relative array aperture, while going toward 
shorter periods the increase in error reflects a loss in signal coherence. 

Another point of interest is the erratic values in lower rows of the last column of Table 5. These 
presumably reflect the low-amplitude oscillations of the coherence at large sensor spacings and 
short periods and, as discussed previously, are an artifact of the curve-fitting procedure. One can 
only be sure that the error is large for these apertures and periods. 
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A important point is that the standard detectors now being investigated for infrasound arrays 
would be less likely to work well at shorter periods and larger apertures because they rely on sig- 
nal correlation. 

Estimate of Standard Error of Azimuth Due to Propagation Error 

We also see from Table 5 that the CD array with an aperture of 1 km would have a standard error 
of azimuth estimation of 4.5 degrees at 5-second period for a threshold detection. This value is 
greater than the 1.8 degree rms azimuth standard error determined by the 7-11 km aperture 
AFTAC arrays for the distance range 0 to 2000 km (Blandford and Clauter, 1996). Table 5 also 
shows, assuming an 8 km aperture, that the AFTAC arrays would have had a threshold azimuth 
error approximately of 1.25 degrees at 5-second period. 

However, it is important to realize that the AFTAC azimuth estimates were likely obtained at sub- 
stantially better than threshold signal-to-noise ratios, that the azimuths were averaged over several 
successive windows, and that signals of shorter periods than 5 seconds were sometimes used. 

Calculations using equation (3) shows that for an 8 km aperture array, the azimuth resolution for a 
sensor amplitude signal-to-noise of 3.0, perhaps more typical for AFTAC experience, the azimuth 
resolution would be 0.48 degrees, much less than the 1.8 degrees observed. 

In addition, as mentioned previously, were the azimuths averaged over four successive 60-second 
arrival windows, the average azimuth precision would be improved by an independent factor of 2. 

Thus, it seems reasonable that the precision achievable in the early AFTAC arrays would have 
been better than the 1.8 degrees observed, suggesting that this standard error estimate is of propa- 
gation error rather than measurement error. 

As an historical note, Table 5 suggests that periods shorter than 5-second period would not be as 
useful for azimuth determination for a 4-element array with an 8 km aperture. However, the range 
of models over which the likelihood is maximized in the Appendix does not include techniques 
which take advantage of delays between signal onset at different sensors. It may be that higher 
frequencies can be used in some such incoherent processing method, resulting in better precision 
than indicated for shorter periods in Table 5. 

Implications for Array Aperture 

The implication of the foregoing section is that precision better than 1.8 degrees would not be 
needed in the CD network because it would comprise only a small fraction of the total variance 
which includes the natural variance due to propagation. This raises the question of whether a 
1 km aperture array could be satisfactory or whether it would be useful to increase the array aper- 
ture to 2 or 3 km where the azimuthal error at the detection threshold is seen in Table 5 to be 
improved from 4.54 degrees to 2.38 and 1.71 degrees, respectively. 

We must first consider that many signals will be received at better than the threshold detection 
level resulting in better azimuth estimate precision. For example, if the amplitude signal-to-noise 
on the beam was 3.0 instead of 1.5, the azimuth error for the 1 km array may be calculated to be 
2.01 degrees instead of 4.54. 
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In addition, one must consider that the azimuth estimate may be averaged over, for example, four 
different 60-second windows. In this case, also, the azimuth error would be reduced by a factor of 
2. Now one might well expect that this would be standard practice so that it seems reasonable to 
assume that the precision attainable in a 1-km aperture array would be better than 2.27 degrees 
even at the threshold, and at signal-to-noise of 3.0 the precision would be 1.0 degrees. 

Finally, note that, even at the threshold and with no averaging over several windows, the precision 
for the 1-km array at 2 seconds period is 1.39 degrees, and at 1-second it is 0.66 degrees. The pre- 
cision at these shorter periods may be seen in Table 5 to be substantially the same for the 2-km 
aperture and it is likely to be critical to use the coherence-weighted beam to attain these results for 
the larger array; notice in Table 4 that there is a 3.8 dB beam loss at 1 Hz for the 2 km array. 

r 

Thus, it seems that a 1-km aperture array has an azimuth estimation capability that is very close to 
good enough that location capability will not suffer for 1-kt events at distances less than 2000 km. 
(At larger distances the propagation error is much larger than 1.8 degrees, so that a 1-km aperture 
array is surely adequate.) Furthermore, the processing required at the smaller apertures is likely 
to be simpler. However, let us remember that these conclusions at 5-second period and 1-km 
spacing are based on model extrapolation from data taken at 10.7 seconds period and 7-km spac- 
ing. As mentioned earlier, analysis of more relevant data is crucial. 

From another angle, let us consider the loss in signal coherence as one increases the aperture 
above 1 km. As seen in Table 4, while the signal loss is negligible at T = 5 seconds, it is 3.8 dB at 
0.5-second period for 1-km aperture, and as just noted, 3.8 dB even at 1 Hz for 2-km spacing. 

Recent work in the analysis of underground and surface mining blasts by use of infrasound arrays 
suggests that much useful information for treaty monitoring might be garnered at these frequen- 
cies if infrasound arrays were within a few hundreds of kilometers of the mine (E. Herrin, per- 
sonal communication). In order to retain the capability of analyzing these events, it seems 
imprudent to increase the array aperture above 1 km. 

Designs with an Additional 3-Element Subarray 

To improve the long-period location capability without further degrading the high frequency per- 
formance, one could add a small central tripartite. Table 6 shows nominal coordinates for the base 
1-km aperture array to which one adds an additional three elements as an inverted equilateral tri- 
angle with sides of 0.2 km at the center of the CD array; Tables 7 and 8 show the resulting signal 
loss and azimuth precision. 

14 



x(km) y(km) 

0.0 0.0 

0.0 0.577 

0.5 -0.289 

-0.5 -0.289 

-0.1 0.0578 

0.1 0.0578 

0.0 -0.115 

Table 6: CD 1-km Aperture Array Plus Central Subarray 0.2 km on a Side 

In Table 7 we see that, indeed, for 1 km, this array loses only 0.6 dB at 0.5 seconds, relative to a 4- 
element array with perfect signal correlation. At 2-km aperture we see only a loss of 1.6 dB. 
Thus, this array should have a better detection threshold than the 4-element array at all periods 
and should be much more capable at short periods, including those less than 0.5 seconds. 

Period (sec)/Bandwidth (Hz) 

d(km) 20/0.075 10/0.15 5/0.4 2/0.8 1/1.5 0.5/2 

1 -2.4 -2.4 -2.4 -2.2 -1.6 0.6 

2 -2.4 -2.4 -2.3 -1.6 0.0 1.6 

3 -2.4 -2.3 -2.1 -0.8 1.1 1.9 

4 -2.4 -2.3 -1.9 -0.1 1.5 1.8 

8 -2.3 -1.9 -0.7 1.5 1.7 1.9 

Table 7: Beam Signal Loss (dB), 7-Element Array Consisting of a CD Array, d km 
on a Side, Plus an 0.2 km on a Side, Inverted Centered Equilateral Triangle. Beam 
signal loss relative to a 4-element array with perfect signal correlation. Negative 
loss indicates a gain in beam signal-to-noise. The slight non-monotonic element in 
the 0.5-second column reflects slight changes in mean signal correlation as changing 
array proportions bring different proportions of station pairs parallel and 
perpendicular to the wavefront (see Figure 2). 

By comparing Tables 8 and 4 we see that there is little improvement in azimuth error for periods 
greater than 1 second. However, for 1-second period and greater the gains are substantial. In gen- 
eral terms it is clear that the addition of the subarray has stabilized the performance of the arrays 
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as a function of frequency. For all apertures and for periods of 5 seconds or less, we see fairly uni- 
form performance with azimuth error roughly in the range 0.5 to 2.0 degrees. One suspects that 
this stability will be reflected in robust behavior of processing algorithms. 

Period (sec)/Bandwidth (Hz) 

d(km) 20/0.075 10/0.15 5/0.4 2/0.8 1/1.5 0.5/2 

1 37.8 13.4 4.1 1.25 0.56 0.44 

2 19.2 6.9 2.2 0.78 0.55 0.94 

3 12.9 4.7 1.6 0.70 0.94 1.06 

4 9.7 3.6 1.3 0.77 1.8 1.03 

8 5.1 2.1 1.0 3.4 2.1 1.06 

Table 8: Azimuth Error (deg), 7-EIement Array, CD Array, d km on a Side, Plus an 
0.2-km on a Side, Inverted Centered Equilateral Triangle. Single-element amplitude 
signal-to-noise of 0.75. Calculated for non-perfect correlation using equation (4). 
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QUALITATIVE BEHAVIOR 

Figure 2 shows the decrease in azimuthal error as a function of signal-to-noise for a period of 5 
seconds for the 4-element, 1- and 2-km aperture arrays and for the 2-km, 7-element array. Evalu- 
ations for signal-to-noise at 10, 100, and 1000 shows that the asymptote for large signal-to-noise 
is approximately 0.3. This shows that one eventually reaches the point where the azimuth preci- 
sion is limited by the loss of signal coherence and cannot be improved further. We further see that 
for this period the 2-km arrays have a substantial advantage over the 1-km array, but that there is 
little advantage to adding the small subarray. 
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Figure 2. Azimuthal error as a function of signal-to-noise for a signal period 
of 5 seconds for the 4-element, 1- and 2-km aperture arrays and for the 2-km, 
7-element array; from equation (4). 

Figure 3, in comparison to Figure 2, shows that for a signal period of 1 second the absolute error 
is substantially less than for a signal period of 5 seconds. In this case, all arrays are rather close in 
capability although the 2-km, 7-sensor array is always the best or very close to the best. The only 
exception is for signal-to-noise between 2 and 3 where the 1-km aperture array is slightly better. 
In general the 2-km aperture array is a factor of 1.5 to 2.0 worse than the others. 

It is important to realize that the fairly good performance of the 2-km, 4-element array at 1-second 
period comes only at the expense of complex optimum processing, as expressed, for example, in 
equation (41) in the Appendix, requiring substantially more work than simple beamforming or 
cross-correlation. In addition, these processes have never been executed in practice. 
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Figure 3. Azimuthal error as a function of signal-to-noise for a signal period 
of 1 seconds for the 4-element 1 and 2 km aperture arrays and for the 2 km, 7- 
element array. From equation (4). 

In Figure 4, at the top of the next page, we compare the azimuth estimation of these arrays as a 
function of signal period. We see that the small array behaves relatively poorly at the long periods 
and that the 4-element, 2-km array "blow up" at 0.5 seconds period as is reasonable due to the loss 
of coherence and the absence of a closely-spaced subarray. 

In Figure 5, at the bottom of the next page, we see how at the azimuth estimation capability varies 
with azimuth for the 4-element and 7-element arrays. At 5-second period we see that the capabil- 
ity improves (azimuth error declines) as the aperture increases, while the 1 Hz capability becomes 
worse. However, as the aperture becomes quite large, the 7-element array performs much better 
than the 4-element array. 
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SUMMARY 

Based on data available to date, the 4-element CD infrasonic arrays should be built with an aper- 
ture of approximately 1 km. Loss of signal correlation for the 5-second signals expected from 1 kt 
explosions at distances of 2000 km are expected to be small enough so that detection using stan- 
dard detection techniques will be unaffected. The expected azimuth estimation error at the detec- 
tion threshold for a 5-second period signal series of four 60-second pulses, as expected from a 1 kt 
explosion at a distance of 2000 km, is approximately the same as the 1.8 degree variation of true 
azimuth of arrival from the true back azimuth to the source due to propagation at these distances. 

Since the azimuth estimation error is inversely proportional to the beam amplitude signal-to-noise , 
and also inversely to the square root of the signal duration and bandwidth, we have seen that it is 
very likely that the azimuth to most real 1 kt signals will be calculated to a precision substantially 
smaller than the natural variation. 

The 1 km aperture array has only 1.4 dB loss at 1-second period, but has a 3.8 dB loss at 0.5 sec- 
ond period. Should this be thought excessive for any required analysis of nearby mining explo- 
sions (not likely a consideration at remote stations in the Southern Hemisphere, but very possibly 
a consideration in inhabited areas) then it might be useful to install a small, perhaps 0.2-km aper- 
ture, 3-element subarray. The small subarray enhances detection of long period signals and 
reduces the array loss at short periods. It does not significantly change the location capability of 
the 1-km array, but would make it possible to expand that array to 2-km aperture, which would 
result in a substantial gain in both long and short period capability. 

All of these results rest on an extrapolation of data taken at 10- to 80-second period over spacings 
of 7 to 60 km. Analysis of more representative data is urgently needed before these conclusions 
can be accepted as a basis for deployment. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

As noted above, a high priority must be to determine improved coherence versus distance rela- 
tions from strong signals in the 0.1- to 3.0-km intersensor distance range. Data should be of sig- 
nals with good signal-to-noise in order not to confuse loss of signal coherence with random noise. 

Data with good signals should soon be available from historical data from Alaska and from the 
"Windless Bight" station in Antarctica, VNDA. The Alaskan array has sensors separated by 
intervals of approximately 0.7,1.4,1.7, and 2.2 up to 6.2 km while the Antarctic array had sensor 
spacings of 1,1.5, and 2.6 up to 6.2 km; both should offer excellent data for analysis. There are 
on-line arrays in Texas (TXI) and Australia (WRAI). WRAI has elements separated by 0.3, 0.5, 
and 1.8 to 3 km;, TXI has elements separated by up to 0.3 km. 

The above suggests that good signal-to-noise signal waveforms from operational sensors spaced 
in the critical range of 0.5 to 2 km are likely to continue to be rare for some time from on-line 
arrays; efforts should be made to modify an existing array or to deploy a temporary array in order 
to gather the appropriate data for operational testing. 

When this data is available the signals could be added at different signal-to-noise ratios to noise 
from the same sensors, and the actual degradation in azimuth estimates determined by standard 
processors observed. Also, the errors from subarrays with different apertures could be compared 
at fixed signal-to-noise. 

Processors to implement the optimum detectors and azimuth estimators for uncorrelated signals 
should be developed and applied to synthetic and actual data. Comparisons could be made to 
incoherent detectors and azimuth estimators, especially at high frequencies or large apertures 
where processors which depend on correlation may begin to fail. 
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APPENDIX: Detection and Estimation for Propagating Stochastic Signals 

Robert H. Shumway 
Division of Statistics 

University of California, Davis 
October 1, 1996 

1. The Stochastic Signal Model 

In general a model for a collection of signals, observed at an array of N sensors whose 
response is denoted by yj(t), j = 1,..., N, t = 0,1,..., T — 1 is 

VjV) = *j(t-W)) + "i(t) (i) 

where Sj(t) are random signals, assumed to be different on each channel, and Tj{6) are 
time delays induced by a propagation pattern indexed by the wavenumber coordinates 
0 = (0i,02)' which are nonlinearly related to the velocity and azimuth of a propagating 
plane wave. We assume that the signals are stationary processes and denote the N x JV 
spectral matrix by f3(v),— .5 < u < .5. The noise processes are often assumed to be 
independent and identically distributed across the array but have a stationary correlation 
structure over time; we denote the common spectral density by Pn{y). with v denoting 
frequency in cycles per unit time. The time delays are expressed in terms of the physical 
locations r,- = (>"ji,rj2)' of the sensors as 

r',0 
TjiP) = -^ (2) 

over a set of frequencies u where the assumption (2) can be made. We may also consider 
a version of (1) which assumes a common stochastic signal, say s(t), on all channels, i.e. 

Vj(t) = s{t-Tj(0))+vj(t), (3) 

and we refer to this as the perfect correlation model. 

It is conventional to consider the above model in the frequency at a collection of L 
frequencies, say v\,..., ui over which the signal and noise spectral matrices are constant, 
say at fs and PnlN where IN denotes the N x N identity matrix. Taking discrete Fourier 
transforms yields the approximation 

Yje = Aj(9)Sje + Vje (4) 

over a set of frequencies I — 1,..., L, where 

Aj{6) =exp{-27rzi/Tj} 

= exp{-27rtrj-0}. (5) 
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This means that we may write a vector form of (4) in the frequency domain as 

Ye = G(9)Se + Ve, (6) 

where Y*, S^ and V* are vector transforms of the observed data, signal and noise respec- 
tively and 

G(8)=diag{A1(9),A2(9),...,AN(9)} (7) 

is an N x N matrix with the Aj(6)'s down the diagonal.   The spectral matrix of the 
observed vector Y^ is clearly 

fy(6) = G(6)f3G*(8) + PnIN (8). 

where C* denotes the complex conjugate transpose of the matrix C. The mean value of 
the vector Y^ is zero since the signal and noise processes are assumed to have zero means. 

A special case of interest is the perfectly correlated signal where we assume that the 
model (4) is 

Yjt = Aj($)St + Vjt, (9) 

which is stacked in the form 
Yi = g(6)Si + Ve (10) 

where 
g(e) = (A1(e),A2(d),...,AN(0)y (11) 

now becomes an N x 1 vector and the spectral matrix becomes 

fy^) = P3mS*(0) + PnIN. (12) 

It should be noted that the model discussed in this note differs from the usual case 
where we regard the signal as being fixed and unknown, but identical between sensors. In 
that case, the model looks exactly like Equation (9), with the signal assumed to be fixed 
and unknown. Hence the vector Ye in this case will have mean g(6)S — £ and spectral 
matrix PUIN- The theory for various proposed estimators in this case has been covered 
in Hinich and Shaman (1972), Hinich (1981), Wu (1982), Shumway (1983} or Brillinger 
(1985). 

For the stochastic signal case, we consider estimation of the signal and its mean square 
error in the next section and then move to sections on maximum likelihood detection and 
estimation in the following sections. 

2. Signal Estimation 

For the stochastic signal case, it is clear that,in the frequency domain, the signal 
estimation problem can be solved under either the linearity or Gaussian assumptions by 
computing the conditional expectation of the signal given the data under the Gaussian as- 
sumption. We consider the two cases corresponding to models assuming perfect correlation 
and more general correlation structures. 
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2.1  Signal Estimation: The Perfectly Correlated Signal 

The perfectly correlated case has also been considered by Harris (1990). Suppose we 
consider the model given by (9) under the assumptions on the noise and spectral matrices 
summarized in (11). Using the Gaussian assumptions leads to estimating Se by 

Se(B) = E(St\Yt) 

= P3g*(9) (Psg*(0)g(0) + PUIN)    Ye 

= (g(0)g*(0) + ^)   V(*)Y, 

= g^)Y£ 

N + r ' 

where g*(0)g(0) = N from (5) and (11) and 

(13) 

r = ^ (14) 

is the inverse of the signal to noise ratio. The result exhibits the signal estimator as the 
beam, g*(0)Yf, adjusted by a multiplier that depends on the number of elements N and 
the noise to signal ratio r. The mean square error of the signal estimator reduces to 

a\6) = P.- P3g*(6) (Pag(0)g*(0) + PUIN)    g(6)Ps 

= Pn(g*(%(0) + ^)   ' 

Pn (15) N + r 

It is clear that the estimated signal is basically the beamformed estimator g*(0)Y^ and 
that the variance of the beam goes down by a factor that is weighted by the number of 
sensors plus the inverse of the signal to noise ratio. 

2.2  Signal Estimation: The General Correlated Signal 

For the general stochastic signal case, it is convenient to assume that the transforms 
are complex Gaussian and again use the fact that the conditional expectation Se(9) — 
E(Se\Yg) has the smallest mean square error. For the general model (5), we obtain 

MV = fsG*(8) (G($)faG*(6) + PUIN)    Ye 

= (G*(9)G(e) + Pnfr1)    <?(9)Yt, (16) 
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using a standard matrix identity (see, for example, Jazwinski, 1970). The estimator in- 
volves computing the delayed quantity Aj(9)Yjt on each sensor and then adjusting by 
multiplying by the adjustment matrix involving the spectral matrices of the signal and 
noise. The mean square covariance matrix of the estimator is given by 

E(*) = /. - fsG*{6) (G(9)faG*(6) + PnIN\    G(0)fs 

= PU(G*(9)G(9) + PB/-i)    , (17) 

using another identity from Jazwinski (1970). We note that for Aj{9) as defined in (3)- 
and (4), we have the simplification 

G*(0)G(9) = IN, (18) 

so that the multiplying matrices in (16) and (17) do not depend on 9, and we may write 

St(9) = CG*(9)Ye (19) 

and 
S = PnC, (20) 

where 

c=(iN+pnfr^ , (2i) 

for use in later equations. We notice that the optimal estimator is no longer the beam, 
but is essentially a weighted beam of the form 

AT 

£*i(0) = ]C cik exp{27r»Vt0}yfcj (22) 

with weights proportional to the elements of C defined by (21). 

3. Maximum Likelihood Estimation 

In the stochastic signal case, we regard the wavenumber vector 9 = (öi,^)' and the 
nonlinear functions velocity and azimuth, say 

c = 
yffl+% 
v 

(23) 
irn 

and 
a = tan"1(Ö2/Ö1) (24) 
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as the parameters to be estimated. The log likelihood function is of the form 

L 

logL(6) = -L\og\fy(0)\ -Y^VttfyiÖT'Yt, (25) 
e=i 

where the form taken by the spectral density matrix of the data can be either (8) or (12) 
depending on whether we have the perfect or general correlation models. Suppose, for 
the moment, that we only want estimators for the velocity and azimuth. Large sample 
likelihood theory implies that, for a true value of 6, the distribution of $ is approximately 
normal with mean 6 and covariance matrix 

Having done this, note that the velocity and azimuth are nonlinear functions, say h(0) = 
(c,a)' = (hi(8),h2(6))' and the delta method implies that the function is approximately 
normal with mean h(0) and 

^ih(*)i=(?)cOT'(*)©' (27) 

For the velocity and azimuth functions, note that 

0h i     / ~~ ^*i      —v02 

m m*   \ 11*11*2      -11*11*1 
(28) 

The following sections discuss maximum likelihood estimation and derive the limiting 
distribution of the maximum likelihood estimators for velocity and azimuth. We also derive 
the likelihood ratio detectors for the signal and its distribution for the perfectly correlated 
case. 

3.1  Maximum Likelihood: The Perfectly Correlated Signal 

For the perfectly correlated case, with covariance matrix (11), we may write the log 
likelihood function (25) as 

(29) 

This is seen to be a monotone function of the beam power which will be proportional to 

L 

£(*) = £|g*(*)Y,|2. (30) 
e=i 
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Hence, to maximize the log likelihood, it will be sufficient to maximize the beam power 
(30) over 0. 

Suppose that we look for the likelihood ratio criterion for testing the presence or 
absence of the signal Si. Then, for St = 0, we will obtain a test statistic that is a 
monotone function of the beam power in (30). For any 0, under the hypothesis Ps = 0, 
the distribution of B{9) is proportional to a chi-squared distribution with 1L degrees of 
freedom, i.e. 

^~sm öD 
Under the alternative hypthesis, assuming the wavenumber vector is evaluated at the, 
correct 0, we have 

>m~(i+s*ym (32) 
If 0o is the model value and we use the beam at 0, the distribution of the test statistic is 

^~(l + d(Mo)|hx2(2i;), (33) 

where 
N    N 

d{9,60) = N-1 £ £ coBpirfo - rk)'(9 - 0o)] (34) 
i=i fc=i 

and the detection probability is a function of the offset between 0 and 0O. 

The uncertainty of the maximum likelihood estimators for velocity and azimuth are 
evaluated by using (26)-(28) in conjunction with the log likelihood (29) and we note that 
the covariance matrix of 0 simplifies, since 

d2log£(0) _ (2TT) 

d9d9' 

Hence, 

Pn\N + r) E E «P{2«(ri " TMYjtYMrj - rk)(rj - rk)>. 

„f d2 log L(9)\     ,o ,2     L      P9 ^,     , , , 

-E{    d9d9>    J = (27r) {N^)P~n ^{rjTj ~ rjTk ~ rkTj + TkTk) 

R, (35) 
_ 2(2ir)2N2L 

where 

R=4 !>> -f xr> -f y v-,     -/v-,     -, (36) 
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is the sample covariance matrix of the array coordinates. It follows that 8 will be approx- 
imately normal with mean 9 and approximate covariance matrix 

C°^)"2(^i^(1 + ^)i2"1 (37) 
where r is the inverse of the signal-to-noise ratio (13).   Then, defining the vectors 9 = 
{91,92)' and 6 = (02, -#i)', we obtain the variance estimators for 

1      r (       r\   v2   9'R~19 
2(27r)2iVV       N)\\6\\'      L W 

and 

2(2TT)2 iV y-+ N) \\8\\*     L     ■ W 

Evaluating the above equations at 8 will produce consistent estimators for the variances. 

3.2 Maximum Likelihood: The General Correlated Signal 

For the signal with a general correlation structure, as in (1), the log likelihood has the 
covariance structure given by (7) and we write (24) in the form 

logL(0) ex -Ilog|/a| -logII* + P„fr1\ 

-T-E^t + ^EvMvilN + Pnfr'Y'&Wt. (40) 

Then, noting that the Hermitian form contains the matrix C in (21), we may write the 
likelihood ratio detector in the form 

^W^TS-E^WC-1^*) (41) 

using (18). The form (41) makes it easy to infer the distribution, since each term is dis- 
tributed as a chi-square with 2 degrees of freedom, conditionally on Ye, I = 1,..., L. Hence 
the unconditional distribution of B{9) is again proportional to a chi-square'd distribution 
with 1L degrees of freedom. 

We may derive variance formulae using an argument similar to that for the perfectly 
correlated case. First, note that 

a2_log_L(Ö) __&_/ 1  A    „, ) 
d6d6'     ~ d9d9>\P~n2^YiG^CG^Yi\ K   n e=i ) 

= d8d8' 1 P~ E E YjtYktCjk exp{-2xi(rj - rk)'8} \ 
k   n j,k   e ) 

= -(27r)2p-EEc^F/Ä(ri ~rk)(rj -rO'expf^iriXrj -rk)'9}. 
n j,k   e 
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Taking expectations, we obtain 

= (2TT)
2
AA (42) 

where f?k denotes the jkth element of the signal spectral matrix and 

D = £ cjtfifa - rk)(rj - Tk).' (43) 
j,k 

In this case we will have 6 distributed approximately as a normal random variable with 
mean 0Q and covariance matrix 

CW^(2^TD_1 <44> 

leading to estimated variances for the velocity and azimuth of the form 

i   „ v2 e'D~le ,  s 
varcKWfPnW~iT- (45) 

and 
i   „   i e'D^e ,  s 

vära"j2KynW~t~ (46) 
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